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A class of precessional-isotonic motions of a gyrostat with a fixed point is considered in the generalized 

dynamical problem. New classes of such motions are found, where the precession of the body can 

either be a semi-regular precession of the second type, or a precessional motion of general form. 

THE INVESTIGATION of precessional-isotonic motion is an important stage in the study of 
precession. In this case, the motion possesses the property of isoconicity (the moving 
hodograph of the angular velocity vector being congruent with the hodograph fixed relative to 
the tangent plane) as well as that of precession. Isotonic motions in dynamics were apparently 
first considered by Fabbri [l] who established their existence in the well-known Steklov 
solution. Using the hodograph method [2] this property was found in [3]. Apart from this case, 
isotonic motions have been observed in the solutions of Lagrange, Zhukovskii [4], Hess- 
Sretenskii [4] and Grioli [5]. All these investigations concern the classical problem of the 
motion of a gyrostat in a gravitational field. In the generalized dynamical problem a result is 
known [6] concerning the conditions for the existence of isotonic gyrostat motion with the first 
level of the appropriate invariant relation. 

1. STATEMENT OF THE PROBLEM 

Consider the generalized problem of the motion of a gyrostat with a fixed point. We will 
write the equations of motion in the form [7,8] 

Ao’=(Ao+h)Xw+wXBvtsXvtvXCu (1.1) 

v’=vx w (l-2) 

They admit of the first integrals 

Aw*w-2(s.v)tCu.v=2E, u.ti=l 

(A w + A) * u-J/~ (f3 Y * v) = k 
(1.3) 

In (l.l)-(1.3) o is the angular velocity of the gyrostat, u is the unit vector describing the 
direction of the axis of symmetry of the force field, A is the gyrostatic moment, s is the 
generalized centre of mass vector, A is the inertia tensor of the gyrostat constructed at the fixed 
point, and B and C are symmetric 3x3 matrices [7, 81. A dot above the variables denotes the 
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derivative with respect to time. 
Suppose the gyrostat motion is precessional about the vertical (the angle between the unit 

vector a fiied to the body and the vector u is constant). We then have the invariant relation [9] 

vaa=rb, a0 =c05eo (1.4) 

where $ is the angle between a and u. From (1.2) the derivative of (1.4) gives ~(a x v) = 0, i.e. 

w = fi 0) a +f2 @I u (1.5) 

The case a XY = 0 is excluded because it implies that the gyrostat rotates uniformly. 
Substituting (1.5) into Eq. (1.2) we obtain 

v’= fl (r)(vX a) (1.6) 

We attach to the body a moving system of coordinates such that the vector a has the form 
a = (0, 0, 1). We then satisfy Eqs (1.4), Y.Y = 1 and (1.6) by introducing a new variable 9 

Y = (a; sinp, 6~: cbslp, ao), a: ~sinBo (1.7) 

and putting fi(r)= (p’. The variable p, plays the role of the angle of proper rotation of the 
gyrostat. If vdenotes its angle of precession, then in (1.5) fi(t) = w’ and so 

w = cp’a + J/‘v (1.8) 

Substituting (1.8) into (1.1) and (1.3) we obtain 

<Aat$Avt$J/‘[Tr(A)(uXa)-2(AvXa)J - 

-~‘2@aXa)-J1*2(AvX~)t~*aX@-Bv)t 

t$‘vX (x-BY)-sx u-vx cII=o 

cp*(Aa.v)tJ;(Av.v)=k-X.u+*/2 (BY-v) 

d’2~a.rr)t2(4JI’(Aa.v)t~.2(Ay.y)= 

= 2(Ets.v)-cv.u. 

(1.9) 

(1.10) 

Since the vectors a, or and ax v are independent, we consider the projections of the left-hand 
side of (1.9) along these vectors. It can be shown that the projections along the vectors a and v 
reduce to Eq. (l.lO), so we only write down the projection along ax Y 

~p~a.(yXa)tJI’Av.(vXa)tcp’~‘[Tr(A)a:: - 

-2(Av*v)+2ao(Aa*v)] t$2[ao(Aa.o)- 

-AsBy] -It;” [a0 (Av.v)-A a+v] -+#[a0 @*a) - 
-X.v-ao(Ba.u)tBv+v] tJI’[X.a--no(X.v)-BaaPt 

+a0 (Bv.u)] ta.s-u. (s.v)tao (Cv.v)-Ca.V=O 

(1.11) 

The method for investigating precession [9] about the vertical is as follows. From (1.20) we 
find the dependence of (p’ and I,# on w and the problem parameters. Substituting these 
expressions into Eq. (1.11) we obtain an equation of the form F(cp, A, A, B, C, k, E) = 0. The 
requirement that it be an identity in cp imposes conditions on the parameters whose satisfaction 
leads to precession of the motion of the body about the vertical. 

Suppose that the motion of the gyrostat has the isoconicity property [9] as well as precession. 
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Then we have the additional invariant relation 

0. (v-c)=0 (1.12) 

where c is a unit vector fixed to the body (and in general different from a). It can be shown that 
when (1.12) is satisfied the moving hodograph of the angular velocity vector is congruent with 
the fixed one [9]. 

We substitute (1.8) into (1.12) 

4p’(ao-a - c.) + Jl’(l-Y-C) =O (1.13) 

Thus, in addition to (1.10) and (1.11) we obtain yet another condition on rp’ and w’. Without 
loss of generality we shall specify the vector c in the form c = (q, 0, cJ, where cf +ct = 1. 

2. REGULAR PRECESSIONAL-ISOCONIC MOTIONS 

Suppose the gyrostat precession is regular cp’ = n, w’ = m. Here relation (1.13) should be an 
identity in Q, and so c, = 0 (c = a) and n = m. Consequently, the condition for the existence of 
precessional-isotonic motion for the case when the precession is regular is found from the 
conditions for regular precessions to exist [lo] having put m= II 

B,z =o, c,z =o, 2n(Azz-A11)--B22 +Bll =o 

n2(A**-J4~~)tC**--C11 =o, n2A13-~&3-C13=0 

n2AlJ-nB23-C23 = 0, s1 =a,,CIs +n*Als (uc, + 1) 

s2 = o,,C, 3 + n*Az 3 (a,, t l), Xi =Blsao-A,$I (2ao + 1) 

X2 =Bzsac,-Azan(2ao +l), n* (A22 tAss-AIi)t 

tnX3 +Bl~n(a,, +I)-B3guz,,--aon* (AII-&s)+ 

+a0 (c,,-cJ3)+sJ =o. 

(2.1) 

The moving hodograph of the angular velocity vector is given by the relations 

Wl =n&sincp, u2=llUb COScp, 03=tZ(l +Uo) (2.2) 

where cp = nt + qO, q,, is an arbitrary constant. On the basis of the Kharlamov equations [2] we 
also find the equation of the stationary hodograph in cylindrical coordinates 

w#=,n(ltuo), ~~=lubnI, a=nftao (2.3) 

It follows from (2.2) and (2.3) that the motion of the body is periodic with period 
T=2rrlInl. 

3. SEMIREGULAR PRECESSIONAL-ISOCONIC MOTION OF THE FIRST TYPE 

We will consider the case when the motion of the body is a semiregular precession of the 
first type: w’ = m, rp’ f const. Obviously, in (1.13) c f a because otherwise the precession is 
regular. Introducing the new parameters 
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U&s-1 
bo =- 

ab ~1 

uo-cj ’ 
co =- 

00 -c3 
(3.1) 

which obviously satisfy the equation b,’ = 1 +ci, from (1.13) we obtain 

9’= m (b, t co sin 9) (3.2) 

Semiregular precession of the firsts type with proper rotational velocity of the form (3.2) for 
the generalized dynamical problem was studied in [ll], where conditions for this type of 
precession to exist were written as equalities which must be satisfied by the parameters in the 
system of equations (l.l), (1.2). If one additionally requires that the condition b,Z = 1 +ci, is 
satisfied, the gyrostat motion has the properties of isoconicity and semiregular precession of 
the first type. When b,, and co are known, the quantities c, and c, are given from (3.1) by the 
formulae 

coo:, a&J + 1 
Cl = - 

a0 +bo ’ 
c3 = 

120 +bo 

We conclude from the equality bi = 1+ ci that cp is a monotonic function of time. To fix our 
ideas we will put m > 0, b,, > 0, c,, > 0 and we find from (3.2) that 

9 
- = arctg [b. tg 5 (I-co tg 
2 

$)-‘] (3.3) 

The equations of the moving hodograph are 

w1 =m~b sin9, w2 =mub cos9, w3 =m [atbo tco sin91 (3.4) 

It follows from (3.3) and (3.4) that the moving hodograph is the curve of the intersection of 
the cylinder w,” + wi = &m” with the plane w, = (c, /u$+ + m(& + b,), and the tip of the angular 
velocity vector moves along it periodically with period T = 2x/m. 

We write the equation of the stationary hodograph in the Cartesian system of coordinates 

WE = wp cos a, wV = wP sin (Y, ws : 

W[ =abmbi’ (cg + cos 9 t boco sin y) 

WV =&n&’ (CO-CO cos 9 t b. sin 9) 

Wf = m (1 t aobo + aOcO sin 9) 

Because of the isoconicity the motion of the body is periodic with period 2alm. 

4. SEMIREGULAR PRECESSIONAL-ISOCONIC MOTIONS OF THE SECOND TYPE 

Suppose that in relations (l.lO), (1.11) and (1.13) 9,’ = n. Then (1.13) gives 

IL = n/A (9), A (9) = b. t co sin 9 (4.1) 

and it follows from (1.10) and (1.11) that 

n(d, coscptd’, sincptdo)t$‘(az cos2cptaz’sin2cpt 

+a, cosIpta,‘sincptat)-(b, cos29tb,‘sin29t 

tbl coscptb:sin9tb#=O (4.2) 
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n’A33 +2n$(dl coSQtdr’SinQ+d,,)t@2(at COS2Qt 

to;Sin2QtQl COSQt&illQtU$)-(C2 COS2Qt 

tCz)SidQtC~ COSQtC,%llQtC~)=O 

$‘~-a2 sin2Qta~cos2Qt’/2a:cosQ-1/2a~ sinQ)+ 

tnJ;(-2a* COS2Q-2&in2Q-G~ COSQ-a:siny?+ 

td,,‘)-nZ (d, cOS$+d~ShQ)-~‘2(a2ao cos2Qt 

ta:ao Sin2tptpr COSQ+Pp:SiIlQ+P&n(2b,, cos2yr+ 

+i?b&iIl2Qtbl COSQtb:SiIlQtb~*)t$$b~a,,COS2Qt 

t2b&, Sin2Qtql COSQtf&i~Qtc&+@& COS2Q- 

-a0 Cz)Sin2Qtr, COSQt+lQtro =o 

(4.3) 

(4.4) 

where the following notation has been introduced 

122 = i/Z ai” (A2*--A,,), ai=ad’A,z, as =2aoadA23 

a,‘=2aoadA,3, a;f= % ad2 (A22 +A, ,)taf A33 

do =aoA33. d, =a;Az3, d:=a;A,3 

b2 = ‘/2 ai2 (B22-Bl ,), b:= ‘/2 ad2 B12 

b, =ad(B23ao-X2), b,‘=ad(B13tio-X,) 

b$=k-h;ao + ‘/,ao2 (B.. +B22)t1/2ag B33 

bg* = % ad2 @l I + B2 2 1. c2 = 1/2 ai2 (C, I -C2 2 ) 

c2 ‘=--ad’ C,2, cl =2ad(s2-Cz3ao) 

cl’ = 2 a; (s, -c, 3&j), cg=2Et2s3ao-1/2 (C,, tC22)ad2-C33~~ 

Pl = adA 3 (a:--~:~), p: =adA, 3 (aG--a12) 

d; =a;‘As3, ~0 = % aoad’ (A, I +A22- 2A33) 

q, =a; [B23 (a;-ad?)-ao&], q/=ad [El3 (a$-ad2)-aoX,] 

q0=ad2 [‘/2~O(h +B22-2B33)+h319 rl=ad[C23(a;4-a0’~)-aoS2] 

r:=ad [Cf3 (aX-a~2)-aosl] 

r. = ad2 1% a0 (Cl1 +C22-2C33)+s31 

We substitute (4.f) into (4.2)-(4.4) and require the resulting equations to be identities in Q. 
We find as a result a non-linear system of algebraic equations connecting the system 
parameters. 

After calculations one can show that it has the following solution 

A 12 =A*3=0, Biz=B23=0, B,,=B22, C,2=C,3-eC’z3=0 

Cl 1 = c22. Sl =s2 =o, x2 =o, h, = ‘/CO [CO (6,3&J- 

--nfft3l+nad(A22-A11)1, s3=ao(C33-C11) + 

+ f (B, 3 ad-B, ,co), X3ad’ = UoQ;’ (B33-B1 ,) t 
f0 

1 
+ - [naoc~A,3-nbocoad(A,,?Azz tA33) t 

nco bo 

naon&o 
1 

t (A2 2 -A33) - ~J&,‘~B, 31, b$ = -- 
1 -x2 

(4.5) 
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h2 
Cf = - 

l--h2 ’ 
h2(ad2Azz +a$A33)-2haoa/A,3 - 

--ad2 (Az~-AII)=O, (A2 +~A33)(Q,a+Q,)2 - 

-4oAf3 (Rio+R,)(elutIZo)-4oA:3 (A~2-A,~)(R,~~R~)2 =o 

Here 

u = a;ffad’, Q, =A:3 (Azz-At I +A333)+A33(Azz-A11)(A33- AII-A221 

Q, =A22 [&3-h 642241,)l 

R, =A, 1A33-A:sr Ro =A22 @11-A22 +A33) 

The last equation has a solution for (T, for example, for the following values: A,, = Za, 
AZ = 30, As3 = 4a, Al3 = a, where a is an arbitrary parameter, because f(0) > 0, f(-) < 0 (here 
f(a) is the left-hand side of the equation under consideration). Obviously, here the pen- 
ultimate equation of system (4.4) has a solution with respect to A. Thus, the solvability of 
system (4.5) is proved, and we have therefore established conditions for precessional-isotonic 
motion of the second type to exist. 

The moving hodograph of the angular velocity vector is given by the equations 

wl = a& sin nt/A (nt), o2 = a& cos nt/A (nt) 

o3 = n (I +a,JA (at)) 

and is therefore the line of intersection of an elliptical cylinder with the cone 

(at + a&g2)2 4 - +-= I 
a~2ti2 bi ao’2n” ’ 

c#$+w’- 2 

The stationary hodograph is given by the relations 

uE=n(ao +1/A(m)), w,=la&zI 

OL = 2 arctg [tg c (b, t co tg 

(4.6) 

(4.7) 

It follows from (4.6), (4.7) that the motion of the body is periodic with period 2x/n. The 
congruency of the moving and stationary hodograph is obvious. 

5, PRECESSIONAL-ISOTONIC MOTION OF THE GENERAL TYPE 

Suppose that cp’ and I/ are not constants in relation (1.13). We will consider the simplest 
case when c = a. Then it follows from (1.13) that 9’ = w’. The integrals (1.10) take the form 

2cp0(Aa.u+AY*u)=Bv-u-201.v)+2k 

,f2[Av~vtAamat2(Aaev)] =2(Ets.u)-Cv.u (5.1) 

Eliminating rp’ from relations (5.1) we obtain the special case Aa ’ zt+ Av e v = 0, which occurs 
under the following conditions 

All =A22, 4412=4,3=4423 =O, ~o=Al,l~A1,-A33) (5.2) 
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Then the right-hand side of the first equation in (5.1) is equal to zero for all 9. This leads to 
the equalities 

B 12 =O, BII =Bzz, AI =BLSZO, X2 =B23a0 

2 k = 2 hJao--‘12 ai2 (B, I + B2 ?) - B3 3ai (5.3) 

Putting cp’ = VI’ in Eq. (1.11) and using (5.1) for Q)‘*, we require the resultling equation to be 
an identity in rp. Using (5.3) this gives the following conditions 

B12 =Blj =Bzs =0, B1, =Bz2, x, =A2 =o 

c23 =c12 =o, c,, =C22, s2 =o 

St =c13 (4A*1Ao3-A:*-A33)(A,1-A~J)-’ (2A33741*)-’ 
(5.4) 

A3 = L411B33 +BII 6433-2A,,)l 6411433)-' 

Hence when conditions (5.2) and (5.4) are satisfied, Eqs (1.1) and (1.2) admit of the solution 

w=cp’(atv), u=(adsincp, adcoscp.ao), vf2=atbsinIp 
(5.5) 

a= is3 V,l-A33)+-411 G1-C33)1 b411433)-~ 

b=2Cl3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Solution (5.5) describes a new class of precessional-isotonic motions, where the gyrostat 
precession is a precession of general form. 

We will consider the reduction of the problem to quadratures. In the second equation of 
(5.5) we introduce the new variable jI = (p- x/2. Then p’ = CI+ 6cosP and 

(5.6) 

Consequently, we find p(t) by inverting an elliptic integral which can be reduced to an elliptic 
integral of the first kind 

u=F(,y,k)=; 
da 

0 Jl -k2 sin’01 

(k is the modulus), where the method of reduction depends on the values of a and b. We find 
the angular velocity components from (5.5) 

cd, = p'ad cos p, cd2 = -P’ad sin 8, w3 = P’(1 + a0) (5.7) 

Case a = b > 0. From (5.6) we obtain 

Since j? = 1c is a stationary point, let us take p = 0 as the initial value of /3 at t = 0. When 
t + M we have p+ 1~. Obviously, the motion of the body is asymptotic to rest. 

Case a z= b > 0. From (5.6) we obtain 

@=2am@2t), sinp= sn(2p2t, k,) 

cosfl=cn(2p2t, k2) (5.8) 



620 YE. v. VERKHOVOD and G. V. GORR 

P’= 2 PZ dn (~2 t, k,), ~2=‘/2-, kz= a- /-- 

The components of the vector o are given by relations (5.7), while the components of the 
vector Y are 

v, =a: cosfl, v2 = --ud sinfl, v3 =a0 (5.9) 

Since under conditions (5.8) solution (5.7) is periodic with period 2T, where 

=I2 d OL 
T,=K. K=J 

P2 o &iGG 

while the stationary hodograph is congruent to the moving one [9], the motion of the body is 
periodic with period 2T,. 

Case b 3 I a I> O,-arccos(-a / b) 4 p s arccos(a / b). If we introduce an auxiliary variable 

then from (5.6) we obtain p* = am&t), where p3 = Jb/2, Here 

sinfl=2kjsn(pgt,kg)dn(p3t.k3), ka=dm 

cosp= 1 - [(a tb)/b] sn2(pjt, k3), /3’=mcn(p3t, kj) (5.10) 

When relations (5.10) hold solution (5.7) is periodic with period 4T,, where T3 = K lp3, K is a 
complete elliptic integral of the first kind. These properties are also possessed by the 
components of the angular velocity vector in the stationary space and the gyrostat motion is 
periodic with the same period. 

Case a > -b > 0, 0 c p 6 27~ Here it is convenient to introduce an auxiliary variable S 

sti& J_- 

On the basis of (5.6) we obtain 6 = am(p,t), where p4 = d(a- b)/2. Consequently 

atb 
J- sinp= - 

sn (2 p,t, k4) 

a-b dn2 (w. k4) 

a-b - 2 a sn2 (p4t, k,) 

‘OS ’ = (u-b) dn2 (p4 t, k4) 

-2b 
k4 = J--- 

a+b ’ 

p._ m 

dn (~4 r, k4 ) 

On the basis of (5.7) and (5.9) these relations enable us to find o and v and to conclude that 
the motion of the gyrostat is periodic with period T, = K/p,. 

To construct the moving hodograph (and hence the stationary one as well) it is sufficient to 
represent it as the line of intersection of the cone 

w: t,: - 
ad’ 

(1 +a0j2 

w:=o 
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with the cylindrical surface with generators parallel to the Ow, axis and intersecting the Oqo, 
plane along a curve given in polar coordinates p, E, by 

The form of the hodograph obviously depends on the values of the parameters a and b. 

6. PRECESSIONAL-ISOCONIC MOTIONS IN THE CLASSICAL PROBLEM 

Precessional-isotonic motions in the case when A = 0 and the matrices B and C are non-zero 
are of special interest. 

If the precessional-isotonic motions are regular, it follows from relations (2.1) that 

All =A22, A12 =A,3 =Az3 = 0, Sl = s2 = 0 

nZA33-uOn2 (Al I-Aaa) + s3 = 0 

i.e. this type of motion is only possible in the special case of the Lagrange solution. 
To determine the conditions for semiregular professional-isotonic motions of the first type 

to exist we turn to the results obtained in [9, 41. The former shows that for the classical 
problem semiregular precession of the first type only occurs in the Hess solution. The latter 
shows that there are no isotonic motions in this solution. 

When the gyrostat motions are semiregular precessional-isotonic motions of the second 
type, relations (4.5) must be satisfied. Substituting By = 0, C,, =0, into them, we obtain a 
contradiction. 

Suppose that the isotonic motion is ia precession of general form. It has been shown [9] that 
a necessary condition for precession of the general type about the vertical to exist is the 
vanishing of the constant of the integral of the moment of momentum. From the first relation 
of (5.1) it follows that in this case the expression in front of rp vanishes for all 9. This reduces to 
the case considered in Section 5. However, it follows from (5.5) that the precession is regular. 

Thus, in the classical problem of the motion of a rigid body in a gravitational field, only 
regular precessional-isotonic motions of the Lagrange gyrostat about the vertical, exist. 
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